Wednesday, 17 August 2016

EXISTING WORK IN SMALL AERIAL VEHICLES

2.7 EXISTING WORK IN SMALL AERIAL VEHICLES
The increased availability of small, low-cost autonomous and remote aerial vehicles has seen a surge in their use for various research and remote sensing applications. More advanced control methods for careful trajectory following and maneuvering have been explored under controlled environments where precision position sensing is available via a video tracking system or similar (Mellinger, 2012). Simultaneous localization and
mapping (SLAM) has been very successfully implemented in indoor environments using laser scanners and cameras (Achtelik, 2009). Outdoor environments provide additional challenges including wind disturbances and larger scale environments that may challenge SLAM algorithms, though recent work has focused on improving the autonomous operation of quadrotors in feature-rich outdoor environments (Wendel, 2011). Remotely-operated aerial vehicles with little or no built-in autonomy are commercially available through several manufacturers and used not only for research, but also aerial reconnaissance by law enforcement agencies, rescue services, and others.
The application of an autonomous aerial vehicle to marine environmental sensing presents challenges most similar to those tackled by remotely operated commercially operated vehicles. The environment is very feature-poor, and hence not amenable to the large body of research available for navigation and control of quadrotors in a more controlled environment (Achtelik, 2009).  The desired operation ranges also greatly exceed those typically supported by commercial systems, which typically rely on the vehicle remaining within eyesight of an operator. The unique marine environment exposes the vehicle to harsher external conditions, primarily wind, and imposes a very high penalty, complete loss, for any system failure, whether it be in software or hardware (Achtelik, 2009).
2.8 SENSORS
The sensors described here are just a few of the most common sensors typically found on autonomous marine platforms.
2.8.1 Conductivity, Temperature, and Depth (CTD) Sensors: Possibly the most common instrument used in oceanographic experiments, a CTD can measure water temperature, salinity, and density. Modern CTDs are small enough to be mounted on almost any vehicle while still providing excellent accuracy. A CTD is usually the first step in studying any environmental phenomenon. Additional sensing capabilities for parameters such as pH and dissolved oxygen can also be built into CTD instruments (Achtelik, 2009).
2.8.2 Mass spectrometers and flourometers: At their most fundamental level, mass spectrometry is used to measure the mass-to-charge ratio of charged particles and determine elemental composition or the chemical structure of molecules. Underwater mass spectrometers provide this functionality in a small package that operates on samples of water, usually provided by an internal pump and filter apparatus (Boykov, 2001).  They are useful for identifying low molecular weight hydrocarbons and volatile organic compounds associated with pollutants. Flourometers perform similar measurements by examining the intensity and wavelength of electromagnetic emissions from a sample after excitation. They identify higher molecular weight compounds including organic entities such as chlorophyll. Together the two techniques can give us a more precise picture of the various chemicals present in a water sample (Curcio,  2005).
2.8.3 Acoustic Doppler Current Profiler (ADCP): An ADCP can perform remote current measurements by sending acoustic pulses and measuring the Doppler shift in the return reflected by particles in the water. Through the use of multiple beams, an ADCP can determine the three-dimensional current flow at multiple distances from the sensor. Range can vary from just a few meters to hundreds of meters, with accuracy typically decreasing with range as lower frequencies must be used. ADCPs are frequently mounted facing downwards from an AUV or surface vehicle to measure current throughout the water column (Curcio,  2005). Some units can also function as a Doppler Velocimetry Logger (DVL), locking onto the seafloor and measuring the velocity of the vehicle rather than water currents (Curcio,  2005).

2.8.4 Imaging sonar: While less applicable to environmental sensing, imaging sonars still bear mentioning here because of their widespread use on underwater vehicles. Side-scan sonars are commonly used on AUVs or towed behind surface ships to image a wide area of seafloor to either side of the vehicle. Varying frequency, usually in the several hundred kilohertz range, provides a tradeoff between swath width and resolution. Other types of sonar are designed to more accurately image smaller areas or even characterize the sediment or rock under the seafloor (Curcio,  2005).

No comments:

Post a Comment

I HOPE THIS HAVE BEEN VERY INFORMATIVE,

Get the Full Material delivered to your Email, . Call us on 07034538881

Follow Us On Twitter,
Like Us On Facebook,
Join Our Cycle On Google+

we can keep u updated by subscribing for free using your email
For more clarification, Please Leave a comment.

Related Posts Plugin for WordPress, Blogger...